Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation

نویسندگان

  • Jiaxin Niu
  • Rita Vaiskunaite
  • Nobuchika Suzuki
  • Tohru Kozasa
  • Daniel W. Carr
  • Nickolai Dulin
  • Tatyana A. Voyno-Yasenetskaya
چکیده

Heterotrimeric G proteins and protein kinase A (PKA) are two important transmitters that transfer signals from a wide variety of cell surface receptors to generate physiological responses. The established mechanism of PKA activation involves the activation of the Gs-cAMP pathway. Binding of cAMP to the regulatory subunit of PKA (rPKA) leads to a release and subsequent activation of a catalytic subunit of PKA (cPKA). Here, we report a novel mechanism of PKA stimulation that does not require cAMP. Using yeast two-hybrid screening, we found that the alpha subunit of G13 protein interacted with a member of the PKA-anchoring protein family, AKAP110. Using in vitro binding and coimmunoprecipitation assays, we have shown that only activated G alpha 13 binds to AKAP110, suggesting a potential role for AKAP110 as a G alpha subunit effector protein. Importantly, G alpha 13, AKAP110, rPKA, and cPKA can form a complex, as shown by coimmunoprecipitation. By characterizing the functional significance of the G alpha 13-AKAP110 interaction, we have found that G alpha 13 induced release of the cPKA from the AKAP110-rPKA complex, resulting in a cAMP-independent PKA activation. Finally, AKAP110 significantly potentiated G alpha 13-induced activation of PKA. Thus, AKAP110 provides a link between heterotrimeric G proteins and cAMP-independent activation of PKA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design.

The catalytic subunit of cAMP-dependent protein kinase has served as a prototype for the protein kinase superfamily for many years while structures of the cAMP-bound regulatory subunits have defined the conserved cyclic nucleotide binding (CNB) motif. It is only structures of the holoenzymes, however, that enable us to appreciate the molecular features of inhibition by the regulatory subunits a...

متن کامل

Anchoring of protein kinase A-regulatory subunit IIalpha to subapically positioned centrosomes mediates apical bile canalicular lumen development in response to oncostatin M but not cAMP.

Oncostatin M and cAMP signaling stimulate apical surface-directed membrane trafficking and apical lumen development in hepatocytes, both in a protein kinase A (PKA)-dependent manner. Here, we show that oncostatin M, but not cAMP, promotes the A-kinase anchoring protein (AKAP)-dependent anchoring of the PKA regulatory subunit (R)IIalpha to subapical centrosomes and that this requires extracellul...

متن کامل

Anchoring of both PKA and 14-3-3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex.

A-kinase anchoring proteins (AKAPs) target the cAMP-regulated protein kinase (PKA) to its physiological substrates. We recently identified a novel anchoring protein, called AKAP-Lbc, which functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha subunit of the heterotrimeric G p...

متن کامل

Selectivity and regulation of A-kinase anchoring proteins in the heart. The role of autophosphorylation of the type II regulatory subunit of cAMP-dependent protein kinase.

Downstream regulation of the cAMP-dependent protein kinase (PKA) pathway is mediated by anchoring proteins (AKAPs) that sequester PKA to specific subcellular locations through binding to PKA regulatory subunits (RI or RII). The RII-binding domain of all AKAPs forms an amphipathic alpha-helix with similar secondary structure. However, the importance of sequence differences in the RII-binding dom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001